

# Diretrizes gerais de calibração Micrômetro externo – Hastes fixas DG-METEQ-CAL-001-01

# DIRETRIZES GERAIS PARA CALIBRAÇÃO DE MICRÔMETRO EXTERNO

### 1. OBJETIVO

Este documento tem como objetivo apresentar as diretrizes básicas (recomendações) para a calibração de micrômetros externos com batentes fixos e faces de medição planas ou esféricas.

Este documento reúne informações obtidas em normas e documentos reconhecidos, buscando facilitar a interpretação e aplicação deles, auxiliando os laboratórios de calibração na elaboração de procedimentos internos.

# 2. CARACTERÍSTICAS METROLÓGICAS A SEREM AVALIADAS NA CALIBRAÇÃO

- Erro de indicação (contato total das faces de medição);
- Erro de paralelismo (contato parcial das faces de medição).

# 3. DOCUMENTOS DE REFERÊNCIA

- a) ISO 3611: 2010 Geometrical product specifications (GPS) Dimensional measuring equipment: Micrometers for external measurements Design and metrological characteristics:
- b) DIN 863-1: 2017 Geometrical product specifications (GPS) Micrometers Part 1: Micrometers for external measurements; maximum permissible errors;
- c) ASME B89.1.13-2013, Micrometers. American Society of Mechanical Engineers: New York: 2013:
- d) Richtlinie DKD-R 4-3 Blatt 10.1: 2010 Kalibrieren von Messmitteln für geometrische Messgrößen - Kalibrieren von Bügelmessschrauben mit planparallelen oder sphärischen Messflächen. Disponível em: https://www.dakks.de/sites/default/files/dakks-dkd-r\_4-3\_blatt\_10.1\_20101221\_v1.1.pdf;
- e) David Flack. Good Practice Guide No. 40 Callipers and micrometers. NPL, 2014. Disponível em: http://eprintspublications.npl.co.uk/2043/1/mgpg40.pdf;
- f) VIM Vocabulário Internacional de Metrologia: conceitos fundamentais e gerais e termos associados. Inmetro, 2012. Disponível em: http://www.inmetro.gov.br/inovacao/publicacoes/vim 2012.pdf;
- g) EA-4/02 M: 2013 Evaluation of the Uncertainty of Measurement in Calibration. Disponível em: https://european-accreditation.org/wp-content/uploads/2018/10/ea-4-02-m-rev01september-2013.pdf;
- h) NIT-DICLA-021: Expressão da Incerteza de Medição por Laboratórios de Calibração. Revisão 10. Dicla/Inmetro, 2020. Disponível em: http://www.inmetro.gov.br/Sidoq/pesquisa\_link.asp?seq\_tipo\_documento=4&cod\_uo\_nume racao=00778&num\_documento=021.

### 4. EXEMPLOS DE INSTRUMENTOS CONTEMPLADOS NA DIRETRIZ



Micrômetro externo com faces planas e tambor de fricção



Micrômetro externo com faces esféricas e tambor e catraca

### 5. DEFINICÕES

- a) Valor Convencional (VC): valor atribuído ao padrão utilizado;
- b) Indicação: leitura realizada no micrômetro em calibração;
- c) Erro de indicação: Diferença entre a indicação no micrômetro e o valor convencional (VC);
- d) Erro de Indicação (contato total das faces de medição): Erro de indicação quando o contato total das faces de medição é empregado em qualquer posição da faixa de medição;
- e) Erro de paralelismo (Contato parcial com as faces de medição): Diferença máxima em medições sucessivas usando contato parcial das faces de medição em qualquer posição nas faces de medição, mas no mesmo ponto nominal da faixa de medição do micrômetro.

# 6. CONDIÇÕES AMBIENTAIS

A calibração do instrumento deve ser realizada à temperatura de referência de 20°C. A recomendação é que a temperatura do mensurando, padrão e das condições ambientais se mantenham na faixa de 20°C + 1°C.

As alterações e oscilações de temperatura devem ser observadas durante a calibração e incluídas no balanço da incerteza de medição.

### 7. PADRÕES E ACESSÓRIOS

a) para determinação do erro de indicação:



Blocos-padrão, conforme ISO 3650 (Fonte: http://www.mitutoyo.com.br)



Máquina de medição linear (Fonte: http://www.sunpoc.com/En/ULM-670H.html)

### b) para determinação do erro de paralelismo:



Paralelos ópticos (Fonte: http://www.mitutoyo.com.br)



Blocos-padrão (Fonte: http://www.wodonis.com.br)



Esfera-padrão (Fonte: https://www.steinle.com)

### c) para verificação da qualidade das faces de medição planas:



Plano óptico (Fonte: http://www.hk-co.de)

# 8. CONDUÇÃO DA CALIBRAÇÃO

Antes de iniciar a calibração do instrumento, realizar uma inspeção do mesmo no que se refere aos aspectos funcionais e de conservação, por exemplo: qualidade da superfície dos sensores (quando necessário, utilizar um plano óptico para a checagem das faces de medição planas), funcionamento da catraca e trava, folgas no fuso micrométrico, etc.

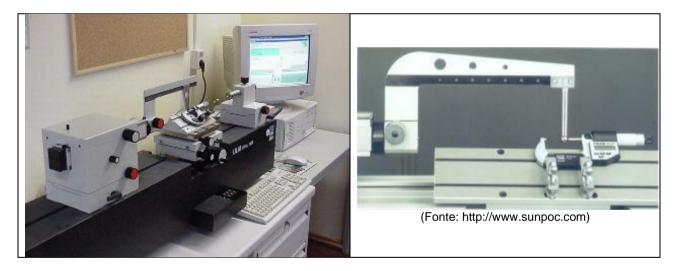
Na calibração do micrômetro para determinação do erro de indicação, realizar o ajuste de zero ou ajuste de defasagem, quando pertinente.

Para micrômetros externos com faces de medição planas, realizar também a medição do erro de paralelismo.

### 8.1 Determinação do erro de indicação (contato total das faces de medição)

O erro de indicação do micrômetro é usualmente determinado pela medição de uma série de blocos-padrão, que contemplam indicações no início e final da faixa de medição, e em posições intermediárias.

As dimensões dos blocos-padrão devem ser escolhidas de forma a avaliar o fuso do micrômetro em voltas completas e posições angulares. Para micrômetros com passo de rosca de 0,5 mm e 1 mm, é recomendada a seguinte série de blocos-padrão:

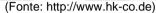

### a) 0 - 2.5 - 5.1 - 7.7 - 10.3 - 12.9 - 15.0 - 17.6 - 20.2 - 22.8 e 25 mm;

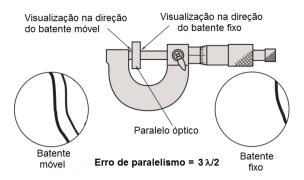


Para micrômetros com faixa de medição superior a 25 mm, os comprimentos dos blocos-padrão a serem utilizados na calibração são obtidos pela montagem de um bloco-padrão de comprimento igual ao limite inferior da faixa de medição aos blocos-padrão citados na sequência apresentada acima.

### 8.1.1. Erro de indicação (utilizando máquina de medição linear)

Uma alternativa de calibração para micrômetro com faixas superiores, é determinar o erro de indicação do fuso micrométrico em uma máquina de medição linear. Neste caso, a influência da força de medição deve ser considerada, realizando a medição no início e final da faixa de medição com blocos-padrão.



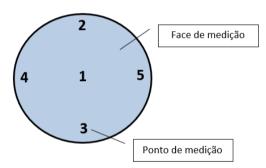


### 8.2 Determinação do erro de paralelismo

Para micrômetros com faixas de medição de 0 a 25 mm, de 25 a 50 mm, de 50 a 75 mm e 75 a 100 mm, o erro de paralelismo é determinado através da utilização de 3 ou 4 paralelos ópticos (que se diferenciam da espessura em 1/3 ou 1/4 do passo da rosca do fuso micrométrico respectivamente).

O paralelo óptico deve ser colocado entre as faces de medição, sob a pressão da catraca ou do acionamento de fricção. Movendo cuidadosamente o paralelo óptico entre as faces, o número de franjas de interferência visíveis em uma das superfícies deve ser reduzido ao mínimo, quando aquelas na superfície oposta devem ser contadas. O erro de paralelismo é obtido através da observação do total de franjas de interferências geradas em ambas as faces de medição.








(Fonte: adaptado de http://www.threadcheck.com)

### 8.2.1 Erro de paralelismo (utilizando esfera-padrão ou blocos-padrão)

Uma alternativa para determinação do erro de paralelismo é a utilização de medidas materializadas, como esfera-padrão ou o próprio bloco-padrão. Para o micrometro com faixa de medição de 0 a 25 mm, a recomendação é o uso de esfera-padrão. Neste caso, as medições devem ser realizadas em 4 diferentes posições das faces do micrômetro próximas ao diâmetro externo e uma medição no centro da faixa de medição. Se o micrômetro apresentar um eixo rotativo, este procedimento deve ser previsto em diferentes posições angulares (fuso deslocado em aproximadamente 90°).

Para faixas de medição maiores, a recomendação é utilizar a borda do bloco-padrão para determinar o erro de paralelismo.



Posições para a medição do erro de paralelismo

### 8.3 Checagem do erro de planeza

Quando necessário, o erro de planeza de cada face de medição pode ser determinado através da utilização de um plano óptico. Quando essas superfícies estiverem rigorosamente limpas, o plano óptico é colocado em contato com uma superfície de cada vez, buscando minimizar o número de franjas de interferência ou obter círculos concêntricos. A forma das franjas determina o erro de planeza.





(Fonte: adaptado de http://www.threadcheck.com)

# 9. INCERTEZA DE MEDIÇÃO

A incerteza expandida é estimada com base EA-4/02 e NIT DICLA-021.

- 9.1 Possíveis fontes de Incerteza de Medição na determinação do erro de indicação:
  - a) Repetibilidade;
  - b) Erros não corrigidos e incerteza da calibração dos padrões utilizados;
  - c) Resolução do micrômetro;
  - d) Planeza das faces de medição;
  - e) Diferença de temperatura em relação ao 20° C;
  - f) Diferença de temperatura entre o padrão e o micrômetro:
  - g) Erros não corrigidos e incerteza da calibração do medidor de temperatura.
- 9.2 Formato da planilha para cálculo da Incerteza de medição

| Fonte de incerteza | Tipo | Valor | Divisor | u(x <sub>i</sub> ) | Dist.<br>Probab. | Ci    | u <sub>i</sub> (y) | Vi                 |
|--------------------|------|-------|---------|--------------------|------------------|-------|--------------------|--------------------|
|                    |      |       |         |                    |                  |       |                    |                    |
|                    |      |       |         |                    |                  |       |                    |                    |
|                    |      |       |         |                    |                  |       |                    |                    |
|                    |      |       |         |                    |                  |       |                    |                    |
|                    |      |       |         |                    |                  |       |                    |                    |
|                    |      |       |         |                    |                  |       |                    |                    |
|                    |      |       |         |                    |                  | u(y): |                    | V <sub>eff</sub> : |
|                    |      |       |         |                    |                  | U:    |                    | k:                 |

### Legenda:

- u(x<sub>i</sub>) incerteza padrão de entrada
  - c<sub>i</sub> coeficiente de sensibilidade
- $u_i(y)$  contribuição para incerteza padrão
  - *v<sub>i</sub>* − graus de liberdade
- u(y) incerteza combinada ou incerteza-padrão de saída
- v<sub>eff</sub> − graus de liberdade efetivos
- N número de fontes de incerteza
- k fator de abrangência para P(95,45%)
- U Incerteza expandida de medição

# Fórmulas:

$$u(x_i) = \frac{Valor}{divisor}$$

$$u_i(y) = c_i \cdot u(x_i)$$

$$u(y) = \sum_{i=1}^{n} u_i^2(y)$$

$$v_{eff} = \frac{u^4(y)}{\sum_{i=1}^{N} \frac{u_i^4(y)}{v_i}}$$

$$U = k.u(y)$$

# Apêndice A: Exemplo de calibração de um micrômetro externo analógico com faixa nominal de 0 a 25 mm, com resolução indicada 0,01 mm

A.1.1 Registro da Calibração REGISTRO DE CALIBRAÇÃO DO MICRÔMETRO EXTERNO Digital Analógico 1 - DADOS N° do Micrômetro: ME-XXX Data: XX/XX/20XX Faixa de Medição (FM): 0 a 25 mm Nr. Registro: DIM-XXX Resolução Indicada: 0,01 mm Resolução adotada: 0,001 mm Fabricante: XYZ Executante: Fulano de Tal 2 - PADRÕES UTILIZADOS 3 - CONDIÇÕES AMBIENTAIS Jogos de Blocos-Padrão Temperatura Inicial: 20,2°C Jogo de Paralelos óptico Temperatura Final: 20,5°C Realizado ajuste no inicio da FM? **X** Não Sim. Indicação antes do ajuste:\_\_ mm 4 - ERROS DE INDICAÇÃO V.C. M1 M2 Média Erro de Indicação (mm) (mm) (mm) (mm) (µm) 0 0,000 0,000 0,0000 0,0 2.5 2,501 2,502 2,5015 1,5 5,1020 2,0 5,1 5,101 5,103 7,703 7,7025 2,5 7,7 7,702 10,3 10,300 10,300 10,3000 0,0 12,9 12,899 12,900 12,8995 -0,5 15 14,998 14,999 14,9985 -1,5 17,6 17,598 17,598 17,5980 -2,0 20,2 20,200 20,202 20,2010 1,0 22,800 22,801 22,8005 0,5 22,8 25 25,000 24,999 24,9995 -0,5 4.1 - REPETIBILIDADE 5,101 5,101 5,102 5,103 5,102 Desvio-padrão (µm): 0.84 5 - ERRO DE PARALELISMO **PARALELO** N° DE FRANJAS **N° DE FRANJAS ERRO DE PARALELISMO - EP** ÓPTICO (face fixa) (face móvel) (µm) 12 0,96 2 1 12,12 1 0,64 1 3 0 0,96 12,25

0

2

12,37

0,64

### A.1.2 Cálculo de Incerteza de Medição

# A.1.2.1 Incerteza de medição para o Erro de Indicação (contato total com as faces de medição)

| B.                  |      |                          |         |                      |    |                  | <b>U</b> i                       | (y), u(y)          | ), U em            | μm   |
|---------------------|------|--------------------------|---------|----------------------|----|------------------|----------------------------------|--------------------|--------------------|------|
| Fonte de incerteza  | Tipo | Valor                    | Divisor | u(x <sub>i</sub> )   | )  | Dist.<br>Probab. | Ci                               | u <sub>i</sub> (y) | ν                  | 'i   |
| Re                  | Α    | 0,84                     | √2      | 0,594                | μm | t                | 1                                | 0,594              | 4                  |      |
| $U_BL$              | В    | 0,08                     | 2       | 0,040                | μm | Ν                | 1                                | 0,040              | ox ox              | )    |
| E <sub>BL</sub>     | В    | 0,10                     | √3      | 0,058                | μm | R                | 1                                | 0,058              | ×                  | )    |
| Res.                | В    | 1,0                      | √3      | 0,577                | μm | R                | 1                                | 0,577              | ×                  | )    |
| E <sub>T≠20°C</sub> | В    | 1 x 2,0 10 <sup>-6</sup> | √3 . √6 | 4,7 10 <sup>-7</sup> |    |                  | 25000                            | 0,012              | α                  | )    |
| $E_{\Deltat}$       | В    | 0,5                      | √3      | 0,289                | °C | R                | 25000 .<br>11,5 10 <sup>-6</sup> | 0,083              | X                  | )    |
|                     |      |                          |         |                      |    |                  | u(y):                            | 0,831              | V <sub>eff</sub> : | 15   |
|                     |      |                          |         |                      |    |                  | U:                               | 1,8                | k:                 | 2,18 |

Detalhamento das fontes de incerteza:

# a) Repetibilidade (Re):

$$u(x_i) = \frac{s}{\sqrt{n}}$$
  $s = desvio-padrão amostral  $n = n$ úmero de medições ut$ 

$$c_{i} = 1$$

$$v_i = n^* - 1$$

 $c_i=1$   $v_i=n^*-1$   $\mathbf{n}^*=\mathbf{n}$  número de medições utilizadas para calcular o desvio-padrão amostral

# b) Incerteza de medição do bloco-padrão (U<sub>BL</sub>):

$$u(x_i) = \frac{U_{BL}}{k_{BL}}$$

U<sub>BL</sub> = Incerteza expandida, extraída do certificado de calibração

k<sub>BL</sub> = fator de abrangência para P(95,45%), extraído do certificado de calibração

Distribuição de Probabilidade: Normal

$$c_{i} = 1$$

Nota: No caso de k >2, a distribuição de probabilidade é t, e vi deve ser consultado na respectiva tabela para P(95,45%).

$$v_i = \infty$$

# c) Erro do bloco-padrão (E<sub>BL</sub>):

$$u(x_i) = \frac{E_{BL}}{\sqrt{3}}$$

E<sub>BL</sub> = Erro do bloco-padrão, extraído do certificado de calibração

Nota: Quando E for significativo, fazer a correção e não considerar no balanço de incerteza de medição

Distribuição de Probabilidade: Retangular

$$c_i = 1$$
$$v_i = \infty$$

$$v_i = \infty$$

### d) Resolução adotada do micrômetro (Res)

$$u(x_i) = \frac{Res}{\sqrt{3}}$$

Res = Resolução do micrômetro (menor variação perceptível na indicação)

Distribuição de Probabilidade: Retangular

$$c_{i} = 1$$

$$v_i = \infty$$

e) Diferença entre os coeficientes de dilatação linear do padrão e micrômetro, quando a temperatura for diferente de 20°C (E<sub>T#20°C</sub>)

$$u(x_i) = \frac{\delta \alpha. \, \Delta T}{\sqrt{6}. \, \sqrt{3}}$$

 $\delta \alpha$  = diferença entre os coeficientes de dilatação do padrão e micrômetro.

Nota: Para mesmo material, é usual adotar  $\delta \alpha = \pm 2.0 \ 10^{-6} ^{\circ} \text{C}^{-1}$ .

$$c_i = L$$

 $\Delta T$  = Diferença de temperatura em relação ao 20°C. Nota: É recomendável incluir na diferença de temperatura, o erro de indicação e a incerteza do medidor de temperatura.

L = Dimensão máxima do micrômetro

$$v_i = \infty$$

Distribuição de Probabilidade: -----

Diferença de temperatura entre padrão e micrômetro (E<sub>At</sub>)

$$u(x_i) = \frac{\Delta t}{\sqrt{3}}$$

 $\Delta t$  = diferença de temperatura entre padrão e micrômetro.

Nota: É recomendável incluir na diferença de temperatura, a incerteza do medidor

 $\alpha$  = média entre os coeficientes de dilatação linear do padrão e do

micrômetro. L =comprimento medido.

Distribuição de Probabilidade: Retangular

### A.1.2.2 Incerteza de medição para o Erro de Paralelismo

 $u_i(y)$ , u(y), U em  $\mu$ m

| Fonte de incerteza | Tipo | Valor | Divisor | u(x <sub>i</sub> ) | Dist.<br>Probab. | Ci    | u <sub>i</sub> (y) | Vi                   |
|--------------------|------|-------|---------|--------------------|------------------|-------|--------------------|----------------------|
| Re                 | В    | 0,32  | √3      | 0,185 μm           | R                | 1     | 0,185              | 8                    |
| $U_{\text{PaO}}$   | В    | 0,06  | 2       | 0,030 μm           | N                | 1     | 0,030              | 8                    |
| E <sub>PaO</sub>   | В    | 0,10  | √3      | 0,058 μm           | R                | 1     | 0,058              | 8                    |
|                    |      |       |         |                    |                  | u(y): | 0,196              | V <sub>eff</sub> : ∞ |
|                    |      |       |         |                    |                  | U:    | 0,39               | k: 2,00              |

a) Repetibilidade (Re):

$$u(x_i) = \frac{\Delta_f}{\sqrt{3}}$$

 $\Delta_f$  = variação na contagem das franjas

Nota: Estimativa de ± 1franja (±0,32 µm).

 $c_i = 1$  $v_i = \infty$ 

Distribuição de Probabilidade: Retangular

b) Incerteza de medição do paralelo óptico (U<sub>PaO</sub>):

$$u(x_i) = \frac{U_{Pa0}}{k_{Pa0}}$$

 $u(x_i) = \frac{U_{PaO}}{k_{PaO}}$   $U_{PaO} = \text{Incerteza expandida, extraída do certificado de calibração}$   $k_{PaO} = \text{fator de abrangência para P(95,45\%), extraído do certificado do cer$  $k_{PaO}$  = fator de abrangência para P(95,45%), extraído do certificado de calibração

Distribuição de Probabilidade: Normal

 $c_{i} = 1$ 

Nota: No caso de k >2, a distribuição de probabilidade é t, e vi deve ser consultado na respectiva tabela para P(95,45%).

 $v_i = \infty$ 

c) Erro do paralelo óptico (E<sub>PaO</sub>):

$$u(x_i) = \frac{E_{PaO}}{\sqrt{3}}$$

E<sub>BL</sub> = Erro do paralelo óptico, extraído do certificado de calibração

 $c_i = 1$  $v_i = \infty$ Distribuição de Probabilidade: Retangular



# Calibramax Ltda - Laboratório de Metrologia

Rua dos Testes, 100 Cidade - UF

### Certificado de calibração nº **DIM-XXX**

### 1 – DADOS:

Solicitante: Exemplus Ltda

Denominação: Micrômetro externo Fabricante: XYZ

Faixa Nominal: 0-25 mm N° do instrumento: ME-XXX Resolução indicada: 0,01 mm Data de calibração: XX/XX/20XX

### 2 - DEFINIÇÕES:

Valor Convencional (VC): valor atribuído ao padrão utilizado.

Erro de indicação: Diferença entre o valor medido no micrômetro e o valor convencional do bloco-padrão.

Erro de Indicação (contato total das faces de medição): Erro de indicação quando o contato total das faces de medição é empregado em qualquer posição da faixa de medição.

Erro de paralelismo: Desvio máximo obtido entre as duas faces de medição.

# 3 - PROCEDIMENTO DE CALIBRAÇÃO:

PROC-XXX-XX revisão XX: Calibração de micrômetro – hastes fixas.

Os erros de indicação foram obtidos através da comparação com blocos-padrão, tendo contato total com as faces de medição. Foram realizados dois ciclos de medição.

O erro de paralelismo foi determinado em quatro posições distintas, deslocadas em aproximadamente ¼ de volta do fuso, através da utilização de paralelos ópticos.

Não foi realizado ajuste no instrumento de medição.

Condições ambientais: 20°C ± 1°C

### 4 - PADRÃO UTILIZADO:

Jogo de blocos-padrão (P-XXX), calibrado em XX de XXX de 20XX, por *ReferenciaPlus* – Certificado de calibração – RF-XXX. Próxima calibração: XX/20XX.

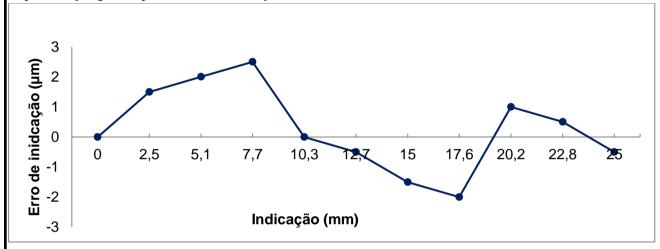
Jogo de paralelos ópticos (P-XXX), calibrado em XX de XXX de 20XX, por *ReferenciaPlus* – Certificado de calibração – RF-XXX. Próxima calibração: XX/20XX.

### **5 - RESULTADOS:**

| Característica                                         | Maior valor medido<br>(µm) | U<br>(µm) | k    | $v_{\it eff}$ |
|--------------------------------------------------------|----------------------------|-----------|------|---------------|
| Erro de paralelismo                                    | 1,0                        | 0,4       | 2,00 | 8             |
| Erro de Indicação (contato total das faces de medição) | 2,5                        | 1,8       | 2,18 | 15            |

Folha: 01/02




# Calibramax Ltda - Laboratório de Metrologia

Rua dos Testes, 100 Cidade - UF

Certificado de calibração nº **DIM-XXX** 

Folha: 02/02

Representação gráfica para o erro de indicação:



# 6 - OBSERVAÇÕES:

### Notas:

- A incerteza expandida de medição relatada é declarada como a incerteza padrão da medição multiplicada pelo fator de abrangência k (apresentado acima), de tal forma que a probabilidade de abrangência corresponda a aproximadamente 95%.
- Os resultados deste certificado referem-se exclusivamente ao instrumento submetido à calibração, nas condições especificadas, não sendo extensivo a quaisquer lotes.
- Não é permitida a reprodução parcial deste certificado.

Apêndice B: Exemplo de calibração de um micrômetro externo digital com faixa nominal de 75 a 100 mm, com resolução de 0,001 mm.

B.1.1 Registro da Calibração REGISTRO DE CALIBRAÇÃO DO MICRÔMETRO EXTERNO Digital Analógico 1 - DADOS N° do Micrômetro: ME-XXX Data: XX/XX/20XX Faixa de Medição (FM): 75 a 100 mm Nr. Registro: DIM-XXX Resolução Indicada: 0,001 mm Resolução adotada: ----Fabricante: XYZ Executante: Fulano de Tal 2 - PADRÕES UTILIZADOS 3 - Condições ambientais Jogos de Blocos-Padrão Temperatura Inicial: 20,2°C Jogos de Paralelos óptico Temperatura Final: 20,5°C Máquina de medição linear Realizado ajuste no início da FM? Sim. Indicação antes do ajuste: 75,003 mm ∐ Não 4 – ERROS DE INDICAÇÃO NOS EXTREMOS DA FAIXA DE MEDIÇÃO VC Erro de М1 М2 М3 Μ4 Média Bloco-padrão Indicação: (mm) (mm) (mm) (mm) (mm) (mm) (µm) 75 75,000 74,999 75,000 74,999 74,9995 -0,5 100 100,000 100,001 100,001 100,0008 0,8 100,001 Desvio-padrão (μm) : 0,540 6 5 - ERROS DE INDICAÇÃO DO FUSO Indicação VC1 (mm) VC2 (mm) VC - Média Erro de Indicação Máquina Máquina Máguina (µm) (mm) 75 75,0000 75,0000 75,0000 0,0 77,5 77,5002 77,5000 77,5001 -0,1 80.1 -0,4 80,1005 80,1004 80,1004 82.7 -0,2 82,7001 82,7003 82,7002 85,3 85,3000 85,3003 85,3002 -0,2 87,9 87,8996 87,8998 87,8997 0,3 90 89,9995 89,9995 89,9995 0,5 92,6 92,5994 92,5995 92,5994 0,6 95,2 95,1993 95,1992 95,1992 0.8 97,8 97,7994 97,7995 97,7994 0,6 100 99,9992 99,9994 99,9993 0,7 Desvio-padrão (µm): 0,120  $\vartheta_i$ : 10 6 - ERRO DE PARALELISMO Posições de medição (mm) Bloco-Padrão (mm) 1 2 4 5 74,999 75,000 75 75,000 75,001 75,000 Face de medição Ponto de medição

### B.1.2 Cálculo de Incerteza de Medição

# B.1.2.1 Incerteza de medição para o Erro de Indicação do fuso (medidas realizadas na máquina)

|                     |      |                          |         |                      |    |                  | U <sub>i</sub>                   | (y), u(y)          | <i>),</i> U em μm     |
|---------------------|------|--------------------------|---------|----------------------|----|------------------|----------------------------------|--------------------|-----------------------|
| Fonte de incerteza  | Tipo | Valor                    | Divisor | u(x <sub>i</sub> )   |    | Dist.<br>Probab. | Ci                               | u <sub>i</sub> (y) | Vi                    |
| Re                  | Α    | 0,120                    | √2      | 0,085                | μm | t                | 1                                | 0,085              | 10                    |
| U <sub>MML</sub>    | В    | 0,2                      | 2       | 0,1                  | μm | N                | 1                                | 0,1                | 8                     |
| E <sub>MML</sub>    | В    | 0,6                      | √3      | 0,346                | μm | R                | 1                                | 0,346              | ∞                     |
| Res.                | В    | 0,5                      | √3      | 0,289                | μm | R                | 1                                | 0,289              | 8                     |
| E <sub>T≠20°C</sub> | В    | 1 x 2,0 10 <sup>-6</sup> | √3 . √6 | 4,7 10 <sup>-7</sup> |    |                  | 25000                            | 0,012              | ∞                     |
| $E_{\Deltat}$       | В    | 0,5                      | √3      | 0,289                | °C | R                | 25000 .<br>11,5 10 <sup>-6</sup> | 0,083              | 8                     |
|                     |      |                          |         |                      |    |                  | u(y):                            | 0,477              | V <sub>eff</sub> > 50 |
|                     |      |                          |         |                      |    |                  | U:                               | 1,0                | k: 2,00               |

Detalhamento das fontes de incerteza:

### a) Repetibilidade (Re):

 $s_p$  = desvio-padrão amostral combinado

$$u(x_i) = \frac{s_p}{\sqrt{n}} \qquad \qquad s_p = \sqrt{\frac{\sum_{i=1}^k s_i^2}{k}}$$

 $s_i$  = desvio-padrão obtidos na indicação i

n = número de medições utilizadas para calcular a média

$$c_i = 1$$
 Distribuição de Probabilidade:  $t$   $v_i = k(n-1)$  k = número de posições calibradas

# b) Incerteza de medição da máquina de medição linear (U<sub>MML</sub>):

$$u(x_i) = \frac{U_{MML}}{k_{MML}}$$
  $U_{MML} = Incerteza$  expandida, extraída do certificado de calibração  $k_{MML} = fator$  de abrangência para P(95,45%), extraído do certificado de calibração

Distribuição de Probabilidade: Normal

Nota: No caso de k >2, a distribuição de probabilidade é 
$$t$$
, e  $v_i$  deve ser consultado na respectiva tabela para P(95,45%).  $v_i = \infty$ 

### c) Erro da máquina de medição linear (E<sub>MML</sub>):

$$u(x_i) = \frac{E_{MML}}{\sqrt{3}} \begin{tabular}{ll} E_{MML} = Erro da máquina de medição linear, extraído do certificado de calibração \\ Nota: Quando E for significativo, fazer a correção e não considerar no balanço de incerteza de medição \\ \end{tabular}$$

$$c_i = 1$$
 Distribuição de Probabilidade: Retangular  $v_i = \infty$ 

### d) Resolução adotada do micrômetro (Res)

$$u(x_i) = \frac{(lnc/2)}{\sqrt{3}}$$
 Inc= Incremento digital do micrômetro

$$c_i = 1$$
 Distribuição de Probabilidade: Retangular  $v_i = \infty$ 

e) Diferença entre os coeficientes de dilatação linear do padrão e micrômetro, quando a temperatura for diferente de 20°C (E<sub>T≠20°C</sub>)

 $u(x_i) = \frac{\delta \alpha. \Delta T}{\sqrt{6}. \sqrt{3}}$ 

 $\delta\alpha$  = diferença entre os coeficientes de dilatação do padrão e micrômetro. Nota: Para mesmo material, é usual adotar  $\delta\alpha$  =±2,0 10-6°C-1.

 $\Delta T$  = Diferença de temperatura em relação ao 20°C.

 $c_i = L$ 

Nota: É recomendável incluir na diferença de temperatura, o erro de indicação e a incerteza do medidor de temperatura.

L =comprimento medido.

 $v_i = \infty$  Distribuição de Probabilidade: -----

f) Diferença de temperatura entre padrão e micrômetro ( $E_{\Delta t}$ )

 $u(x_i) = \frac{\Delta t}{\sqrt{3}}$ 

 $\Delta t$  = diferença de temperatura entre padrão e micrômetro.

Nota: É recomendável incluir na diferença de temperatura, a incerteza do medidor de temperatura.

 $c_i = \alpha.L$ 

 $\alpha$  = média entre os coeficientes de dilatação linear do padrão e do

micrômetro.

L = comprimento medido.

 $v_i = \infty$  Distribuição de Probabilidade: Retangular

### B.1.2.2 Incerteza de medição para o Erro de Paralelismo

 $u_i(y)$ , u(y), U em  $\mu$ m

| Fonte de incerteza | Tipo | Valor | Divisor | u(x <sub>i</sub> ) | Dist.<br>Probab. | Ci    | u <sub>i</sub> (y) | Vi                   |
|--------------------|------|-------|---------|--------------------|------------------|-------|--------------------|----------------------|
| Resa               | В    | 0,5   | √3      | 0,289 μm           | R                | 1     | 0,289              | 8                    |
| Res <sub>b</sub>   | В    | 0,5   | √3      | 0,289 μm           | R                | 1     | 0,289              | 8                    |
|                    |      |       |         |                    |                  | u(y): | 0,409              | V <sub>eff</sub> : ∞ |
|                    |      |       |         |                    |                  | U:    | 0,8                | k: 2,00              |

Resolução adotada do micrômetro (Res)

$$u(x_i) = \frac{(Inc/2)}{\sqrt{3}}$$
 Inc= Incremento digital do micrômetro

 $c_i = 1$  $v_i = \infty$  Distribuição de Probabilidade: Retangular

Nota: Sendo o erro de paralelismo determinada pela máxima diferença entre os pontos medidos, a resolução do micrometro foi considerada duas vezes.

### B.1.2.3 Incerteza de medição para o Erro de Indicação (contato total com as faces de medição)

 $u_i(v)$ , u(v), U em um

|                     |      |                          |         |                      |    |                  | u <sub>i</sub>                   | ( <i>y)</i> , u( <i>y</i> ) | <i>ι,</i> Ο <del>Ε</del> ΠΙ μΠΙ |
|---------------------|------|--------------------------|---------|----------------------|----|------------------|----------------------------------|-----------------------------|---------------------------------|
| Fonte de incerteza  | Tipo | Valor                    | Divisor | u(x <sub>i</sub> )   |    | Dist.<br>Probab. | Ci                               | u <sub>i</sub> (y)          | Vi                              |
| Re                  | Α    | 0,54                     | √4      | 0,270                | μm | t                | 1                                | 0,270                       | 6                               |
| $U_BL$              | В    | 0,10                     | 2       | 0,050                | μm | N                | 1                                | 0,050                       | 8                               |
| E <sub>BL</sub>     | В    | 0,12                     | √3      | 0,069                | μm | R                | 1                                | 0,069                       | $\infty$                        |
| Res.                | В    | 0,5                      | √3      | 0,289                | μm | R                | 1                                | 0,289                       |                                 |
| E <sub>T≠20°C</sub> | В    | 1 x 2,0 10 <sup>-6</sup> | √3 . √6 | 4,7 10 <sup>-7</sup> |    |                  | 100000                           | 0,047                       | $\infty$                        |
| $E_{\Deltat}$       | В    | 0,5                      | √3      | 0,289                | °C | R                | 100000.<br>11,5 10 <sup>-6</sup> | 0,332                       | 8                               |
|                     |      |                          |         |                      |    |                  | u(y):                            | 0,523                       | v <sub>eff</sub> : >50          |
|                     |      |                          |         |                      |    |                  | U:                               | 1,1                         | k: 2,00                         |

Detalhamento das fontes de incerteza:

- a) Repetibilidade (Re): similar a B.1.2.1 a)
- b) Incerteza de medição do bloco-padrão (U<sub>BL</sub>): similar a A.1.2.1 b)
- c) Erro do bloco-padrão (E<sub>BL</sub>): similar a A.1.2.1 c)
- d) Resolução adotada do micrômetro (Res): similar a B.1.2.1 d)
- e) Diferença entre os coeficientes de dilatação linear do padrão e micrômetro, quando a temperatura for diferente de 20°C (E<sub>T≠20°C</sub>): similar a A.1.2.1 e)
- f) Diferença de temperatura entre padrão e micrômetro (E<sub>Δt</sub>): similar a A 1.2.1 f)



Calibramax Ltda - Laboratório de Metrologia Rua dos Testes, 100 Cidade - UF

Certificado de calibração nº **DIM-XXX** 

# 1 – DADOS:

Solicitante: Exemplus Ltda

Denominação: Micrômetro externo Fabricante: XYZ

Faixa Nominal: 75 – 100 mm N° do instrumento: ME-XXX Resolução: 0,001 mm Data de calibração: XX/XX/20XX

### 2 - DEFINIÇÕES:

Valor Convencional (VC): valor atribuído ao padrão utilizado.

Erro de indicação: Diferença entre o valor medido no micrômetro e o valor convencional do bloco-padrão.

Erro de Indicação (contato total das faces de medição): Erro de indicação quando o contato total das faces de medição é empregado em qualquer posição da faixa de medição;

Erro de paralelismo (Contato parcial com as faces de medição): Diferença máxima em medições sucessivas usando contato parcial das faces de medição em qualquer posição nas faces de medição, mas no mesmo ponto nominal da faixa de medição do micrômetro.

# 3 - PROCEDIMENTO DE CALIBRAÇÃO:

PROC-XXX-XX revisão XX: Calibração de micrômetro – hastes fixas.

Os erros de indicação do fuso do micrômetro foram obtidos através da comparação com a máquina de medição linear, sendo realizado o contato somente na face móvel do micrômetro. Foram realizados dois ciclos de medição, sendo feito o "*preset*" na máquina de medição linear em valor igual à indicação nominal do início da faixa de medição do micrômetro.

Os erros de indicação nas indicações inicial e final (contato total das faces de medição) foram obtidos através da comparação com blocos-padrão. Foram realizados quatro ciclos de medição.

O erro de paralelismo foi determinado utilizando 75 mm em 5 posições distintas nas faces de medição.

Foi realizado ajuste da indicação no início da faixa de medição do micrômetro, antes da calibração. A medida obtida antes do ajuste foi de 75,003 mm (Erro de indicação de +0,003 mm).

Condições ambientais: 20°C ± 1°C

### 4 - PADRÃO UTILIZADO:

Jogo de blocos-padrão (P-XXX), calibrado em XX de XXX de 20XX, por *ReferenciaPlus* – Certificado de calibração – RF-XXX. Próxima calibração: XX/20XX.

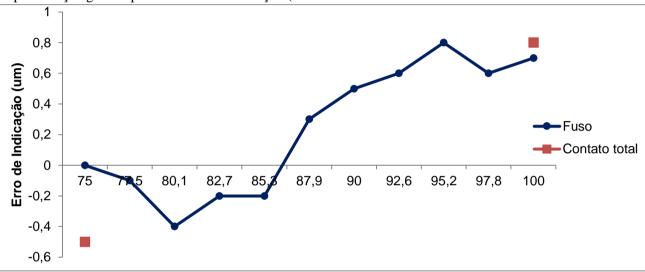
Jogo de paralelos ópticos (P-XXX), calibrado em XX de XXX de 20XX, por *ReferenciaPlus* – Certificado de calibração – RF-XXX. Próxima calibração: XX/20XX.

Máquina de medição linear (P-XXX), calibrada em XX de XXX de 20XX, por *ReferenciaPlus* – Certificado de calibração – RF-XXX. Próxima calibração: XX/20XX.

Folha: 01/02



### Calibramax Ltda - Laboratório de Metrologia


Rua dos Testes, 100 Cidade - UF

### Certificado de calibração nº **DIM-XXX**

### **5 - RESULTADOS:**

| Característica                                            | Maior valor medido<br>(µm) | U<br>(µm) | k    | $v_{\it eff}$ |
|-----------------------------------------------------------|----------------------------|-----------|------|---------------|
| Erro de paralelismo                                       | 2,0                        | 0,8       | 2,00 | 8             |
| Erro de indicação do fuso                                 | 0,8                        | 1,0       | 2,00 | 8             |
| Erro de indicação (contato total com as faces de medição) | 0,8                        | 1,1       | 2,00 | 8             |

Representação gráfica para os erros de indicação (fuso:



Nota: Os erros de indicação (contato total com as faces de medição) representados pelos pontos foram obtidos pela medição direta com blocos-padrão.

### 6 - OBSERVAÇÕES:

Para o cálculo de incerteza de medição do erro de indicação (contato total com as faces de medição) foi incluída a fonte de incerteza devido à influência da força de medição.

Para o cálculo de incerteza de medição do erro de indicação (contato parcial com as faces de medição) foram incluídas as fontes de incerteza devido ao erro de paralelismo e planeza das faces de medição.

### Notas:

- A incerteza expandida de medição relatada é declarada como a incerteza padrão da medição multiplicada pelo fator de abrangência k (apresentado acima), de tal forma que a probabilidade de abrangência corresponda a aproximadamente 95%.
- Os resultados deste certificado referem-se exclusivamente ao instrumento submetido à calibração, nas condições especificadas, não sendo extensivo a quaisquer lotes.
- Não é permitida a reprodução parcial deste certificado.

Folha: 02/02